Основы теоретической физики/Первая пара уравнений Максвелла
2.4.5. Первая пара уравнений Максвелла
[править]Экспериментально доказанную связь электрических и магнитных полей, впервые удалось математически описать во второй половине XIX века британскому ученому Джеймсу Максвеллу. При выводе своих уравнений Максвелл пользовался гипотезой о существовании «светоносного эфира» - некоторой всепроникающей среды, колебания которой проявляют себя как электромагнитные волны. Общие формулы теории относительности позволяют получить уравнения Максвелла, не прибегая к дополнительным гипотезам.
Из определений (2.4.17) и (2.4.18) можно полностью исключить потенциал поля так, чтобы остались только напряженности:
Полученные уравнения дают связь между напряженностями электрического и магнитного поля, это и есть «уравнения Максвелла». Эти уравнения можно записать в интегральной форме если воспользоваться теоремой Гаусса и теоремой Стокса:
1. По теореме Гаусса, от интеграла по объему V можно перейти к интегралу по замкнутой поверхности f, охватывающей этот объем:
Интеграл вектора по поверхности называется «потоком». Подставив (2.4.33) в (2.4.34) , получим:
Таким образом, поток магнитного поля через замкнутую поверхность равен нулю.
2. По теореме Стокса, от интеграла по поверхности можно перейти к интегралу по замкнутому контуру:
Интеграл вектора по контуру называется «циркуляцией». Циркуляция вектора напряженности электрического поля называется «электродвижущей силой» или сокращенно «ЭДС». Подставив (2.4.33) в (2.4.36) , получим:
То есть, ЭДС в замкнутом контуре равна взятой с обратным знаком производной по времени от потока магнитного поля через поверхность, ограниченную этим контуром.
Иногда бывает удобно записывать уравнения Максвелла в четырехмерном виде. Этот вид записи можно получить из определения тензора электромагнитного поля:
См. также
[править]Примечания
[править]