Реализации алгоритмов/Алгоритм Кируса — Бека
Внешний вид
Алгоритм Кируса — Бека (англ. Cyrus — Beck) — алгоритм отсечения отрезков произвольным выпуклым многоугольником.
C#
[править]Для двумерной модели
public struct Segment
{
public readonly PointF A, B;
public Segment(PointF a, PointF b)
{
A = a;
B = b;
}
public bool OnLeft(PointF p)
{
var ab = B.Sub(A);
var ap = p.Sub(A);
return ab.Cross(ap) >= 0;
}
public PointF Normal
{
get
{
return new PointF(B.Y - A.Y, A.X - B.X);
}
}
public PointF Direction
{
get
{
return new PointF(B.X - A.X, B.Y - A.Y);
}
}
public float IntersectionParameter(Segment that)
{
var segment = this;
var edge = that;
var segmentToEdge = edge.A.Sub(segment.A);
var segmentDir = segment.Direction;
var edgeDir = edge.Direction;
var t = edgeDir.Cross(segmentToEdge) / edgeDir.Cross(segmentDir);
if (float.IsNaN(t))
{
t = 0;
}
return t;
}
public Segment Morph(float tA, float tB)
{
var d = Direction;
return new Segment(A.Add(d.Mul(tA)), A.Add(d.Mul(tB)));
}
}
public class Polygon : List<PointF>
{
public Polygon()
: base()
{}
public Polygon(int capacity)
: base(capacity)
{}
public Polygon(IEnumerable<PointF> collection)
: base(collection)
{}
public bool IsConvex
{
get
{
if (Count >= 3)
{
for (int a = Count - 2, b = Count - 1, c = 0; c < Count; a = b, b = c, ++c)
{
if (!new Segment(this[a], this[b]).OnLeft(this[c]))
{
return false;
}
}
}
return true;
}
}
public IEnumerable<Segment> Edges
{
get
{
if (Count >= 2)
{
for (int a = Count - 1, b = 0; b < Count; a = b, ++b)
{
yield return new Segment(this[a], this[b]);
}
}
}
}
private bool CyrusBeckClip(ref Segment subject)
{
var subjDir = subject.Direction;
var tA = 0.0f;
var tB = 1.0f;
foreach (var edge in Edges)
{
switch (Math.Sign(edge.Normal.Dot(subjDir)))
{
case -1:
{
var t = subject.IntersectionParameter(edge);
if (t > tA)
{
tA = t;
}
break;
}
case +1:
{
var t = subject.IntersectionParameter(edge);
if (t < tB)
{
tB = t;
}
break;
}
case 0:
{
if (!edge.OnLeft(subject.A))
{
return false;
}
break;
}
}
}
if (tA > tB)
{
return false;
}
subject = subject.Morph(tA, tB);
return true;
}
public List<Segment> CyrusBeckClip(List<Segment> subjects)
{
if (!IsConvex)
{
Reverse();
if (!IsConvex)
{
throw new InvalidOperationException("Clip polygon must be convex.");
}
}
var clippedSubjects = new List<Segment>();
foreach (var subject in subjects)
{
var clippedSubject = subject;
if (CyrusBeckClip(ref clippedSubject))
{
clippedSubjects.Add(clippedSubject);
}
}
return clippedSubjects;
}
}
public static class PointExtensions
{
public static PointF Add(this PointF a, PointF b)
{
return new PointF(a.X + b.X, a.Y + b.Y);
}
public static PointF Sub(this PointF a, PointF b)
{
return new PointF(a.X - b.X, a.Y - b.Y);
}
public static PointF Mul(this PointF a, float b)
{
return new PointF(a.X * b, a.Y * b);
}
public static float Dot(this PointF a, PointF b)
{
return a.X * b.X + a.Y * b.Y;
}
public static float Cross(this PointF a, PointF b)
{
return a.X * b.Y - a.Y * b.X;
}
}