Реализации алгоритмов/Алгоритм Евклида

Материал из Викиучебника — открытых книг для открытого мира
Перейти к навигации Перейти к поиску

Реализации алгоритма Евклида для вычисления НОД — наибольшего общего делителя (англ. GCD — greatest common divisor) двух целых чисел на различных языках программирования.

Реализации[править]

Assembler[править]

ARM[править]

Вычитание, цикл:

loop	CMP Ri, Rj		; проверка условий NE (i != j), GT (i > j) и LT (i < j);
	SUBGT Ri, Ri, Rj	; если GT, выполняется i = i-j;
	SUBLT Rj, Rj, Ri	; если LT, выполняется j = j-i;
	BNE loop		    ; если NE - переход на метку loop.

Z80[править]

Вычитание, цикл:

GCD_DEHL:               ; CALL Inputs: HL,DE; Output: DE
        AND     A       ; сброс CF
LOOP:
        SBC     HL,DE   ; совмещение трёх в одном - одного сравнения и поочередно двух вычитаний.
        RET     Z       ; минимизация общего размера, поэтому в цикле.
        JR      NC,LOOP
        ADD     HL,DE   ; откат лишнего вычитания
        EX      DE,HL
        JR      GCD_DEHL

BASIC[править]

Деление с остатком, цикл:

GW-BASIC и совместимые диалекты[править]

10 INPUT "Two integer numbers"; A%, B%
20 PRINT "GCD("; A%; ", "; B%; ") = ";
30 WHILE B% <> 0
40 A% = A% MOD B%
50 SWAP A%, B%
60 WEND
70 PRINT ABS(A%)

QuickBasic версий < 4.0, Turbo Basic[править]

DEF FNGCD% (A%, B%)
    DO WHILE B% <> 0
        A% = A% MOD B%
        SWAP A%, B%
    LOOP
    FNGCD% = ABS(A%)
END DEF

PowerBASIC, QBASIC, QuickBasic версий ≥ 4.0, Visual Basic[править]

Function GCD (a As Integer, b As Integer) As Integer
	Do While a <> 0 And b <> 0
		If a > b Then
			a = a Mod b
		Else
			b = b Mod a
		End If
	Loop
	GCD = Abs(a + b) ' Для VB.NET следует заменить эту строку на Return Math.Abs(a + b)
End Function

Деление с остатком, рекурсия:

PowerBASIC, QBASIC, QuickBasic версий ≥ 4.0, Visual Basic[править]

Function GCD (a As Integer, b As Integer) As Integer
    If b = 0 Then
        GCD = Abs(a) ' Для VB.NET следует заменить эту строку на Return Math.Abs(a)
    Else
        GCD = GCD(b, a Mod b) ' Для VB.NET следует заменить GCD = на Return
    End If
End Function

C/C++[править]

C: Тип IntType должен быть задан как:

typedef int IntType; /* Вместо int можно подставить любой другой целочисленный тип */

C++: Любую из нижеприведённых функций (включая abs) следует предварить строкой:

template < typename IntType >

Для корректной обработки отрицательных чисел все последующие примеры на C/C++ используют функцию вычисления модуля числа:

IntType abs (IntType value) {
    return (value < 0) ? -value : value;
}

Деление с остатком, цикл:

IntType gcd (IntType a, IntType b) {
    IntType c;
    while (b) {
        c = a % b;
        a = b;
        b = c;
    }
    return abs(a);
}

Более короткое решение:

IntType gcd (IntType a, IntType b) {
    while (b)
        b ^= a ^= b ^= a %= b;
    return abs(a);
}

Деление с остатком, рекурсия:

IntType gcd (IntType a, IntType b) {
   return (b == 0) ? abs(a) : gcd(b, a % b);
}

Вычитание, цикл:

IntType gcd (IntType a, IntType b) {
    a = abs(a);
    b = abs(b);
    while (a != b) {
        if (a > b)
            a -= b;
        else
            b -= a;
    }
    return a;
}

C#, Java[1][править]

Вместо long можно использовать и другие целочисленные типы — byte, int и т. д.

Деление с остатком, цикл:

static long GCD (long a, long b)
{
    while (b != 0)
        b = a % (a = b);
    return a < 0 ? -a : a;
}

Деление с остатком, рекурсия:

static long GCD (long a, long b)
{
    return b == 0 ? (a < 0 ? -a : a) : GCD(b, a % b);
}

Erlang[править]

Деление с остатком, рекурсия:

gcd(A, 0) -> A;
gcd(A, B) -> gcd(B, (A rem B)).

F#[править]

Деление с остатком, рекурсия:

let rec gcd a b =
    match b with
    |0 -> a
    |b -> gcd b (a % b)

Forth (диалект RetroForth)[править]

Деление с остатком, рекурсия:

: GCD ( n1 n2 -- n ) tuck mod 0; GCD ;

Haskell[править]

Деление с остатком, рекурсия:

gcd :: Integral a => a -> a -> a
gcd 0 0 = error "НОД от 0 и 0 не определён."
gcd x y = gcd' (abs x) (abs y)
    where gcd' x 0 = x
          gcd' x y = gcd' y (x `rem` y)

Pascal[править]

Тип IntType определён как:

type IntType = Integer; { Вместо Integer можно подставить любой другой целочисленный тип }

Деление с остатком, цикл:

function GCD (a, b: IntType): IntType;
begin
    while a * b <> 0 do
       if a > b then
           a := a mod b
       else
           b := b mod a;
    GCD := Abs(a + b)
end;

Более быстрый алгоритм:

function GCD (a, b: IntType): IntType;
var c: IntType;
begin
    while b > 0 do
    begin
        c := a mod b;
        a := b;
        b := c
    end;
    GCD := Abs(a)
end;

Деление с остатком, рекурсия:

function GCD (a, b: IntType): IntType;
begin
   if b = 0 then
       GCD := Abs(a)
   else
       GCD := GCD(b, a mod b)
end;

Perl[править]

Деление с остатком, рекурсия:

sub gcd {
    return  $_[0] != 0  ?  gcd ( ( $_[1] % $_[0] ), $_[0] )  :  $_[1];
}

PHP[править]

Деление с остатком, цикл:

function gcd ($a, $b) {
    while ($a <> 0 && $b <> 0) {
        if ($a > $b)
            $a = $a % $b;
        else
            $b = $b % $a;
    }
    return abs($a + $b);
}
echo gcd(5, 3);

Prolog[править]

Деление с остатком, рекурсия:

?GCD(a, b, x)

GCD(0, b, b) <-
GCD(a, 0, a) <-
GCD(a, b, x) <- a >= b, m is a mod b, GCD(m, b, x)
GCD(a, b, x) <- a < b, m is b mod a, GCD(a, m, x)

w:SWI-Prolog[править]

Деление с остатком, рекурсия:

gcd(0, B, B).
gcd(A, 0, A).

gcd(A, B, X) :-  A >= B, M is A mod B, gcd(M, B, X).
gcd(A, B, X) :-  A < B, M is B mod A, gcd(A, M, X).

Python[править]

Деление с остатком, цикл:

def gcd (a, b):
    while b:
        a, b = b, a % b
    return abs(a)

Деление с остатком, рекурсия:

def gcd (a, b):
    return abs(a) if b == 0 else gcd(b, a % b)

Ruby[править]

Деление с остатком, цикл:

def gcd (a, b)
    a, b = b, a % b until b.zero?
    a.abs
end

Деление с остатком, рекурсия:

def gcd (a, b)
    return a.abs if b.zero?
    gcd(b, a % b)
end

Вычитание, цикл:

def gcd (a, b)
    a = a.abs
    b = b.abs
    if a > b
        a -= b
    else
        b -= a
    end while a != b
    a
end

Rust[править]

Деление с остатком, цикл:

extern crate num;

use self::num::FromPrimitive;
use std::ops::Rem;


pub fn gcd <IntType> (mut a: IntType, mut b: IntType) -> IntType
where IntType: Copy + FromPrimitive + PartialEq + Rem<Output = IntType> {
    let zero = FromPrimitive::from_u32(0u32).unwrap(); // Обобщённая константа 0
    let mut c: IntType;
    while b != zero {
        c = a % b;
        a = b;
        b = c;
    }
    a
}

Вычитание, цикл:

use std::ops::SubAssign;


pub fn gcd <T: Copy + PartialOrd + SubAssign> (mut a: T, mut b: T) -> T {
    while a != b {
        if a > b {
            a -= b;
        } else {
            b -= a;
        }
    }
    a
}

Scheme[править]

Вычитание, рекурсия:

(define gcd (lambda (a b)
  (if (> a b) (gcd (- a b) b)
     (if (< a b) (gcd a (- b a))
        a))))

Shell[править]

Деление с остатком, рекурсия:

gcd () {
    n = 1 a = $1 b = $2
    if [[ $a -ne 0 ]]
    then
        gcd $(( $b % $a )) $a
        let "n = $?"
    else
        let "n = $b"
    fi
    return $n
}

gcd $1 $2
echo "Greatest common divisor is $?"

Глагол[править]

Деление с остатком, цикл:

ЗАДАЧА НОД (a, b: ЦЕЛ): ЦЕЛ;
УКАЗ
    ПОКА (a # 0) И (b # 0) ВЫП
        ЕСЛИ a < b ТО
            b := b ОСТАТОК a
        ИНАЧЕ
            a := a ОСТАТОК b
        КОН
    КОН;
    ВОЗВРАТ МОДУЛЬ(a + b)
КОН НОД;

Программируемые микрокалькуляторы «Электроника»[править]

Использование: <первое число> В↑ <второе число> В/О С/П (НОД на индикаторе).

МК-52 / 61 / 152 / 161 / 163 / 1152[править]

Деление с остатком, цикл. Корректно обрабатываются любые целые числа (включая 0 и отрицательные). В вычислениях участвуют только регистры стека.

00. Fx≠0   01. 13     02. ↔      03. В↑     04. FВx    05. ÷      06. FВx    07. ↔      08. K[x]   09. ×
10. −      11. Fx=0   12. 02     13. +      14. K|x|   15. С/П

Вычитание, цикл. Корректно обрабатываются любые целые положительные числа. В вычислениях участвуют только регистры стека X и Y. <source> 00. − 01. Fx≠0 02. 12 03. Fx<0 04. 09 05. FВx 06. ↔ 07. /−/ 08. − 09. FВx 10. БП 11. 00 12. FВx 13. С/П </source

См. также[править]

Ссылки[править]

  1. Для соответствия правилам оформления кода Java метод следует переименовать в gcd и перенести { в конец предыдущей строки