Перейти к содержанию

Логико-математический анализ теоремы

Материал из Викиучебника — открытых книг для открытого мира

Логико-математический анализ (ЛМА) теоремы — это

Образцы ЛМА теоремы

[править]

Алгебра

[править]

Логарифм

[править]

Прогрессии

[править]
Суммы членов арифметической прогрессии с равными суммами номеров равны
[править]
  1. Теорема сформулирована в категоричной форме.
  2. В импликативной форме теорема будет иметь вид: «Суммы членов арифметической прогрессии равны, если суммы их номеров равны». Символьная формулировка: «Если , то , где и  — ».
  3. Структура теоремы.
    1. Разъяснительная часть: "".
    2. Условие: "".
    3. Требование: "".
  4. Доказательство.
  5. Формулировки утверждений:
    1. обратного данному: «Если суммы членов арифметической прогрессии равны, то суммы номеров этих членов равны».
    2. противоположное данному: «Суммы членов арифметической прогрессии не равны, если не равны суммы их номеров».
    3. обратное противоположному (контрапозитивное): «Если суммы членов арифметической прогрессии не равны, то не равны суммы номеров этих членов».
  6. Математические и общенаучные методы.
    • Математические: метод тождественных преобразований.
    • Общенаучные: анализ и синтез.
  7. Область применения: задачи, где дана арифметическая прогрессия.

Геометрия

[править]

Планиметрия

[править]
Треугольник
[править]
Катет прямоугольного треугольника, лежащий против угла в , равен половине гипотенузы [1]
[править]
Трапеция
[править]
Средняя линия трапеции параллельна основаниям и равна их полусумме [2]
[править]
  1. Теорема сформулирована в категоричной форме, поскольку в тексте нет "если ..., то";
  2. Вид суждения: сложное (есть 2 заключения)
Многоугольник
[править]
Cумма углов выпуклого -угольника равна
[править]
  1. https://uroki.me/logiko--matematicheskiy-analiz-teoremy-3740.html?ysclid=ldkn87y729657576859
  2. https://studfile.net/preview/8656202/