Биология клетки/Часть 1. Клетка как она есть/1/5
← Предыдущая глава | Глава 1.5 | Следующая глава → |
Строение и функции эукариотической клетки | ||
Хотя размеры клеток прокариот и эукариот широко варьируют и сильно (почти полностью) перекрываются, тем не менее, характерные размеры прокариотических и эукариотических клеток все же заметно различаются. Клетка типичной бактерии или археи имеет диаметр 1-2 мкм. Большинство клеток животных имеют диаметр около 10-20 мкм, клетки растений и грибов в среднем еще крупнее. обратите внимание, что десятикратные различия в диаметре означают тысячекратные различия в объеме и массе: внутри клетки человека могут поместиться не десять бактерий, а тысяча.
Разберем подробнее основные признаки клеток эукариот и их отличия от прокариот.
Основные органеллы эукариотической клетки имеют однотипное строение и функции у представителей разных царств
[править]
Клеточная мембрана (плазмалемма) состоит из двух слоёв молекул фосфолипидов. Фосфолипиды состоят из гидрофильной «головки» и из двух гидрофобных «хвостов». Кроме липидов, в состав мембраны входят белки, помогающие мембране выполнять самые разные функции. Толщина мембраны 6-7 нм. На внешней стороне мембраны у животных находится слой олигосахаридов – гликокаликс.
Основные свойства мембраны - полупроницаемость, текучесть, гибкость, способность к самозамыканию и неспособность сильно растягиваться.
Функции мембраны:
1. Отграничение от внешней среды.Мембрана не позволяет клетке «растекаться», а её жидкому внутреннему содержимому - смешиваться с окружающей водной средой.
2. Транспортная функция. Вещества могут проходить через мембрану двумя способами - активным и пассивным. В случае пассивного транспорта вещества проходят мембрану с помощью диффузии. При активном транспорте затрачивается энергия, и обеспечивают его специальные белки-насосы.
3. Восприятие сигналов из внешней среды. На поверхности мембраны находятся белки-рецепторы, принимающие сигналы из внешней среды.
4. Образование межклеточных контактов.
Подробнее строение, свойства и функции мембраны разобраны в разделе #Строение и функции плазматической мембраны
2.) Цитоскелет
Цитоскелет находится в цитоплазме клетки. Он состоит из актиновых микрофиламентов, промежуточных филаментов (есть не во всех клетках) и микротрубочек.
Актиновые филаменты. Диаметр актиновых филаментов 6-8 нм. Состоят из белка актина. Могут собираться и разбираться. ВЗаимодействуя с моторными белками миозинами, обеспечивают цитокинез (у животных), амебоидное движение, мышечное сокращение.
Промежуточные филаменты. Диаметр промежуточных филаментов 9-11 нм. Состоят из кератинов и других фибриллярных белков. Обеспечивают механическую прочность эпителиев, аксонов нервных клеток и других структур. Образуют внутреннюю выстилку ядерной мембраны (ламину), к которой крепятся хромосомы.
Микротрубочки Диаметр микротрубочек 23-25 нм. Микротрубочки состоят из белка тубулина. Они могут собираться и разбираться. Наряду с другими органеллами входят в состав цитоскелета. Создают веретено деления при митозе и мейозе.
Функции:
1. Поддержание и изменение формы клетки; цитокинез
2. Образование веретена деления, "растаскивание" хромосом при делении
3. Ресничное движение. Ресничное движение создается в результате работы ресничек. Реснички состоят из микротрубочек, которые соединены с центриолями.
4. Амебоидное движение
5. Мышечное сокращение
6. Внутриклеточный транспорт везикул и макромолекул
Подробнее строение и функции цитоскелета рассматриваются в разделе #Цитоскелет и клеточная подвижность.
Реснички и жгутики эукариот - подвижные выросты клетки, одетые наружной мембраной. Внутри них имеется сложная система микротрубочек, у подвижных ресничек и жгутиков их обычно 20 (9 пар по периферии и одна пара в центре). В основании ресничек и жгутиков лежит базальное тельце, сходное по строению с центриолью. Подвижные реснички обычно совершают удары в одной плоскости, жгутики - сложное вращательное движение.
Функции:
Ресничное и жгутиковое движение используют одноклеточные эукариоты (жгутиокносцы, инфузории, гаметы многих животных) и мелкие многоклеточные (плоские черви, личинки губок, книдарий и других беспозвоночных)
Подвижные реснички и жгутики могут обеспечивать ток жидкости у поверхности тела или во внутренних полостях (например, у человека - ток спинномозговой жидкости. ток слизи в воздухоносных путях, выносящий из них пыль и микробов)
Неподвижные видоизмененные реснички часто служат воспринимающим аппаратом клеток-рецепторов. Так, у человека видоизмененные реснички обеспечивают восприятие света и запахов.
7.) Центриоли
Помогают в формировании веретена деления, как и микротрубочки. Обычно расположены в паре, около ядра.
Функции:
1. Центр организации микротрубочек
8.) Микроворсинки
Микроворсинки находятся в кишечнике. Их основная функция - всасывание питательных веществ.
9.) Ядро
Окружено двумя мембранами со множеством ядерных пор. Ядерные поры обеспечивают транспорт веществ. Самая крупная из органелл клетки.
Функции:
1. Хранение генетической информации.
2.Управление делением.
3.Синтез ДНК и РНК
10.)Ядрышко
Ядрышко - это особая область ядра, содержит участки хромосом (ядрышковый организатор). Ядрышко состоит из белка и рибосомальной РНК и не окружено мембраной. В ядрышке самая высокая концентрация белка во всей клетке.
Функция:
1.Синтез рРНК и сборка субъединиц рибосом
11.)Рибосомы
Мелкие немембранные клеточные органеллы. Клетка содержит около десятка тысяч рибосом. Они состоят из белков и рибонуклеиновых кислот.
Функция:
1.Синтез белков
12.) Лизосомы
Лизосомы окружены одной мембраной. Они содержат до 40 различных ферментов, которые могут переваривать разные вещества, поступающие в клетку путем эндоцитоза. Производятся в аппарате Гольджи.
Функции:
1.Внутриклеточное пищеварение. Содержат большое количество пищеварительных ферментов, способных расщеплять все группы органических веществ.
2.Аутофагия. При остром голодании лизосомы способны переваривать органеллы клетки. Лизосомы «съедают» органеллы клетки и в случае их повреждения.
4.Переваривание межклеточного вещества.
13.) Митохондрии
Окружены двумя мембранами. Их количество в некоторых клетках может достигать нескольких сотен. Существует теория, согласно которой митохондрии (и хлоропласты) – бывшие бактерии, вступившие в симбиоз с клеткой.
Функции:
1. Синтез АТФ
2. Клеточное дыхание
14.) Аппарат Гольджи
Аппарат Гольджи — одномембранный органиод. Он состоит из мембранных структур - цистерн. Функции:
1. Сортировка белков, синтезированных в сидячих рибосомах.
2.Образование лизосом
3.Секреция
15.) Эндоплазматическая сеть (ЭПС) ЭПС — одномембранный органоид.
Функции:
1.Синтез белков, липидов и углеводов
2.Обезвреживание ядовитых веществ, попавших в организм
3.Транспортная функция
Клетки эукариот крупнее клеток прокариот на три порядка
[править]Типичные клетки эукариот имеют линейные размеры не 1-5, а 10-50 мкм. Это означает, что по объему такая клетка в 1 000 раз больше, чем типичная бактериальная.
В последние десятилетия найдено несколько десятков видов очень мелких эукариот, входящих в состав морского планктона. В основном это представители празинофитовых водорослей и некоторых других групп водорослей. Празинофитовая водросль Ostreococcus — самый мелкий из известных свободноживущих эукариот — имеет средний диаметр клеток 0,8 мкм.
Следствия этого очень важные. При увеличении размеров объём растет пропорционально кубу линейных размеров, а площадь поверхности тела — пропорционально квадрату. Если, например, взять куб с ребром 1 см, а затем увеличить ребро вдвое, то объём куба возрастет в 8 раз (у первого куба объём 1 см³, а у второго — 8 см³. Площадь поверхности первого куба равна 1х1х6 = 6 см², а второго куба — 2х2х6=24 см²; таким образом, площадь поверхности выросла только в 4 раза. Относительная площадь поверхности (отношение площади поверхности к объему) у первого куба — 6/1 (см²/ см³), а у второго — только 24/8 = 3/1 (см²/ см³).
- Вопрос
- Какова относительная площадь поверхности у куба с ребром n см?
Так как бактерии поглощают питательные вещества всей поверхностью клетки, маленькие размеры обеспечивают им быстрые темпы роста и размножения. Этим обусловлена их важная роль в круговоротах веществ.
Скорость перемещения молекул при диффузии пропорциональна корню квадратному из расстояния. Это означает, что молекула, пройдя расстояние в 1 мкм за 1 секунду, пройдет расстояние в 2 мкм за 10 с, а расстояние в 10 мкм — за 100 с. Однако реально малые молекулы диффундируют в цитоплазме достаточно быстро — расстояние в 10 мкм они проходят в среднем за 0,1 с. Однако и эта сравнительно высокая скорость может лимитировать скорость обмена веществ. Как же можно повысить эту скорость?
Для клеток эукариот характерна компартментализация
[править]Чтобы химические реакции шли быстрее, нужно увеличить концентрацию реагирующих веществ. Это можно сделать, если сконцентрировать определенные вещества — ферменты и их субстраты — внутри замкнутого пространства. В разных таких «отсеках» можно создать условия (например, рН), оптимальные для протекания конкретных реакций.
Видимо, в связи с этим в клетках эукариот и возникли компартменты #— «отсеки», отделенные мембранами от цитоплазмы и друг от друга. Говорят, что для клеток эукариот характерна компартментализация (компартментация).
Есть и другие способы повышения скорости химических реакций в клетке. Расчеты показывают, что для столкновения двух молекул (например, конкретных молекул фермента и субстрата) внутри сферы диаметром 10 мкм потребуется в среднем около 30 минут. Если же фермент закреплен на мембране, перегораживающей сферу пополам, а субстрат сначала при диффузии натыкается на мембрану, а затем диффундирует в её плоскости (внутри неё), то время до соударения уменьшается до 2 минут. Если же уменьшить площадь мембраны, то время становится ещё меньше — около 20 секунд. Видимо, этот факт играет важную роль в синтезе липидов, за который отвечают ферменты, закрепленные на мембранах эндоплазматической сети. Эти же закономерности могут играть важную роль в ускорении передачи сигналов, например, от мембранных рецепторов, в которой участвуют связанные с мембраной G-белки.
Клетки животных, растений и грибов различаются деталями строения
[править]Клетки животных, высших растений (а тем более водорослей) и грибов достаточно разнообразны. Когда в учебниках перечисляют их различия, обычно имеют в виду цветковые растения, позвоночных животных и каких-нибудь высших грибов (например, базидиомицетов). Так же поступим и мы.
- Растительные и грибные клетки обладают плотной клеточной стенкой (целлюлозной и хитиновой соответственно) — животные клетки не имеют плотной клеточной стенки.
- В качестве энергетического резерва животные и грибы используют гликоген, растения — крахмал.
- Клетки растений содержат органеллы пластиды, которых нет у животных и грибов.