Реализации алгоритмов/Венгерский алгоритм
Внешний вид
Венгерский алгоритм — алгоритм оптимизации, решающий задачу о назначениях за полиномиальное время.
Java
Реализация Венгерского алгоритма с временной сложность O(n3) для задачи о назначениях (минимизация стоимости). Предполагается, что матрица является квадратной. Код для проверки этого может быть легко добавлен в конструктор. Вызов code>new Hungarian(costMatrix).execute() возвращает двумерный массив, где result[i][0]
и result[i][1]
— индексы строки и столбца назначения i. Алгоритм работает за время O(n3) (или, по крайней мере, так должно быть) и использует O(n2) памяти, улучшаемо[1]:
mport java.util.ArrayList;
public class Hungarian {
private int numRows;
private int numCols;
private boolean[][] primes;
private boolean[][] stars;
private boolean[] rowsCovered;
private boolean[] colsCovered;
private float[][] costs;
public Hungarian(float theCosts[][]) {
costs = theCosts;
numRows = costs.length;
numCols = costs[0].length;
primes = new boolean[numRows][numCols];
stars = new boolean[numRows][numCols];
// Инициализация массивов с покрытием строк/столбцов
rowsCovered = new boolean[numRows];
colsCovered = new boolean[numCols];
for(int i = 0; i < numRows; i++) {
rowsCovered[i] = false;
}
for(int j = 0; j < numCols; j++) {
colsCovered[j] = false;
}
// Инициализация матриц
for(int i = 0; i < numRows; i++) {
for(int j = 0; j < numCols; j++) {
primes[i][j] = false;
stars[i][j] = false;
}
}
}
public int[][] execute() {
subtractRowColMins();
this.findStars(); // O(n^2)
this.resetCovered(); // O(n);
this.coverStarredZeroCols(); // O(n^2)
while(!allColsCovered()) {
int[] primedLocation = this.primeUncoveredZero(); // O(n^2)
// It's possible that we couldn't find a zero to prime, so we have to induce some zeros so we can find one to prime
if(primedLocation[0] == -1) {
this.minUncoveredRowsCols(); // O(n^2)
primedLocation = this.primeUncoveredZero(); // O(n^2)
}
// is there a starred 0 in the primed zeros row?
int primedRow = primedLocation[0];
int starCol = this.findStarColInRow(primedRow);
if(starCol != -1) {
// cover ther row of the primedLocation and uncover the star column
rowsCovered[primedRow] = true;
colsCovered[starCol] = false;
}
else { // otherwise we need to find an augmenting path and start over.
this.augmentPathStartingAtPrime(primedLocation);
this.resetCovered();
this.resetPrimes();
this.coverStarredZeroCols();
}
}
return this.starsToAssignments(); // O(n^2)
}
/*
* the starred 0's in each column are the assignments.
* O(n^2)
*/
public int[][] starsToAssignments() {
int[][] toRet = new int[numCols][];
for(int j = 0; j < numCols; j++) {
toRet[j] = new int[]{this.findStarRowInCol(j), j}; // O(n)
}
return toRet;
}
/*
* resets prime information
*/
public void resetPrimes() {
for(int i = 0; i < numRows; i++) {
for(int j = 0; j < numCols; j++) {
primes[i][j] = false;
}
}
}
/*
* resets covered information, O(n)
*/
public void resetCovered() {
for(int i = 0; i < numRows; i++) {
rowsCovered[i] = false;
}
for(int j = 0; j < numCols; j++) {
colsCovered[j] = false;
}
}
/*
* get the first zero in each column, star it if there isn't already a star in that row
* cover the row and column of the star made, and continue to the next column
* O(n^2)
*/
public void findStars() {
boolean[] rowStars = new boolean[numRows];
boolean[] colStars = new boolean[numCols];
for(int i = 0; i < numRows; i++) {
rowStars[i] = false;
}
for(int j = 0; j < numCols; j++) {
colStars[j] = false;
}
for(int j = 0; j < numCols; j++) {
for(int i = 0; i < numRows; i++) {
if(costs[i][j] == 0 && !rowStars[i] && !colStars[j]) {
stars[i][j] = true;
rowStars[i] = true;
colStars[j] = true;
break;
}
}
}
}
/*
* Finds the minimum uncovered value, and adds it to all the covered rows then
* subtracts it from all the uncovered columns. This results in a cost matrix with
* at least one more zero.
*/
private void minUncoveredRowsCols() {
// find min uncovered value
float minUncovered = Float.MAX_VALUE;
for(int i = 0; i < numRows; i++) {
if(!rowsCovered[i]) {
for(int j = 0; j < numCols; j++) {
if(!colsCovered[j]) {
if(costs[i][j] < minUncovered) {
minUncovered = costs[i][j];
}
}
}
}
}
// add that value to all the COVERED rows.
for(int i = 0; i < numRows; i++) {
if(rowsCovered[i]) {
for(int j = 0; j < numCols; j++) {
costs[i][j] = costs[i][j] + minUncovered;
}
}
}
// subtract that value from all the UNcovered columns
for(int j = 0; j < numCols; j++) {
if(!colsCovered[j]) {
for(int i = 0; i < numRows; i++) {
costs[i][j] = costs[i][j] - minUncovered;
}
}
}
}
/*
* Finds an uncovered zero, primes it, and returns an array
* describing the row and column of the newly primed zero.
* If no uncovered zero could be found, returns -1 in the indices.
* O(n^2)
*/
private int[] primeUncoveredZero() {
int[] location = new int[2];
for(int i = 0; i < numRows; i++) {
if(!rowsCovered[i]) {
for(int j = 0; j < numCols; j++) {
if(!colsCovered[j]) {
if(costs[i][j] == 0) {
primes[i][j] = true;
location[0] = i;
location[1] = j;
return location;
}
}
}
}
}
location[0] = -1;
location[1] = -1;
return location;
}
/*
* Starting at a given primed location[0=row,1=col], we find an augmenting path
* consisting of a primed , starred , primed , ..., primed. (note that it begins and ends with a prime)
* We do this by starting at the location, going to a starred zero in the same column, then going to a primed zero in
* the same row, etc, until we get to a prime with no star in the column.
* O(n^2)
*/
private void augmentPathStartingAtPrime(int[] location) {
// Make the arraylists sufficiently large to begin with
ArrayList<int[]> primeLocations = new ArrayList<int[]>(numRows+numCols);
ArrayList<int[]> starLocations = new ArrayList<int[]>(numRows+numCols);
primeLocations.add(location);
int currentRow = location[0];
int currentCol = location[1];
while(true) { // add stars and primes in pairs
int starRow = findStarRowInCol(currentCol);
// at some point we won't be able to find a star. if this is the case, break.
if(starRow == -1) {break;}
int[] starLocation = new int[]{starRow, currentCol};
starLocations.add(starLocation);
currentRow = starRow;
int primeCol = findPrimeColInRow(currentRow);
int[] primeLocation = new int[]{currentRow, primeCol};
primeLocations.add(primeLocation);
currentCol = primeCol;
}
unStarLocations(starLocations);
starLocations(primeLocations);
}
/*
* Given an arraylist of locations, star them
*/
private void starLocations(ArrayList<int[]> locations) {
for(int k = 0; k < locations.size(); k++) {
int[] location = locations.get(k);
int row = location[0];
int col = location[1];
stars[row][col] = true;
}
}
/*
* Given an arraylist of starred locations, unstar them
*/
private void unStarLocations(ArrayList<int[]> starLocations) {
for(int k = 0; k < starLocations.size(); k++) {
int[] starLocation = starLocations.get(k);
int row = starLocation[0];
int col = starLocation[1];
stars[row][col] = false;
}
}
/*
* Given a row index, finds a column with a prime. returns -1 if this isn't possible.
*/
private int findPrimeColInRow(int theRow) {
for(int j = 0; j < numCols; j++) {
if(primes[theRow][j]) {
return j;
}
}
return -1;
}
/*
* Given a column index, finds a row with a star. returns -1 if this isn't possible.
*/
public int findStarRowInCol(int theCol) {
for(int i = 0; i < numRows; i++) {
if(stars[i][theCol]) {
return i;
}
}
return -1;
}
public int findStarColInRow(int theRow) {
for(int j = 0; j < numCols; j++) {
if(stars[theRow][j]) {
return j;
}
}
return -1;
}
// looks at the colsCovered array, and returns true if all entries are true, false otherwise
private boolean allColsCovered() {
for(int j = 0; j < numCols; j++) {
if(!colsCovered[j]) {
return false;
}
}
return true;
}
/*
* sets the columns covered if they contain starred zeros
* O(n^2)
*/
private void coverStarredZeroCols() {
for(int j = 0; j < numCols; j++) {
colsCovered[j] = false;
for(int i = 0; i < numRows; i++) {
if(stars[i][j]) {
colsCovered[j] = true;
break; // break inner loop to save a bit of time
}
}
}
}
private void subtractRowColMins() {
for(int i = 0; i < numRows; i++) {//for each row
float rowMin = Float.MAX_VALUE;
for(int j = 0; j < numCols; j++) { // grab the smallest element in that row
if(costs[i][j] < rowMin) {
rowMin = costs[i][j];
}
}
for(int j = 0; j < numCols; j++) { // subtract that from each element
costs[i][j] = costs[i][j] - rowMin;
}
}
for(int j = 0; j < numCols; j++) { // for each col
float colMin = Float.MAX_VALUE;
for(int i = 0; i < numRows; i++) { // grab the smallest element in that column
if(costs[i][j] < colMin) {
colMin = costs[i][j];
}
}
for(int i = 0; i < numRows; i++) { // subtract that from each element
costs[i][j] = costs[i][j] - colMin;
}
}
}
}
Примечания
Ссылки
Не все перечисленные ниже реализации удовлетворяют ограничению времени исполнения .
- Реализация на языке Pascal
- Реализация на языке Python
- Короткая реализация на языке Python
- Реализация на Ruby с модульными тестами
- Реализация на C#
- Интерактивная онлайн-реализация Реализует вариант алгоритма.
- Graphical implementation with options (Java-апплет)
- Последовательные и параллельные реализации.
- Используются Matlab и C
- Реализация на Perl
- Реализация на C++
- Другая реализация на C++ с модульными тестами
- более короткая реализация, метод добавления строк
- Реализация на Java (GPLv3)
- Другая реализация на Java с тестами JUnit (Apache 2.0)