Олимпиадные задачи по физике

Материал из Викиучебника — открытых книг для открытого мира

Олимпиадные задачи по физике — задачи повышенной трудности, предлагающиеся школьникам на физических олимпиадах различного уровня. По определению, знаний, содержащихся в стандартном школьном курсе физики и математики, должно быть достаточно для решения таких задач. Трудность же задач состоит в необходимости «чувствовать» предлагаемое явление, понимать, какие из изученных законов надо применить в этом случае.

Можно выделить несколько часто встречающихся групп олимпиадных задач по физике.

Задачи на применение формул[править]

Часто оказывается, что какая-либо тема очень проста с точки зрения физики, а это значит, что её изучают в школе очень подробно, на множестве примеров и со множеством (достаточно простых) формул. Типичный пример такой темы: кинематика тела, брошенного под углом к горизонту. К сожалению, зачастую у учащегося создается впечатление «мешанины формул», и он не понимает, какие именно из кучи известных формул надо записывать в том или ином случае.

Задачи из этой серии как раз проверяют способность школьника чувствовать, что стоит за каждой формулой, какие формулы относятся к предложенной задаче, а какие нет. Обычно такие задачи не представляют математической сложности: после записи нужной системы уравнений задача решается быстро. Трудность заключается в аккуратном выписывании формул.

Пример 1

Тело брошено вертикально вверх с некоторой скоростью. В тот момент, когда оно достигло наивысшей точки, которая располагается на высоте h над землей, вслед за ним с той же самой начальной скоростью было брошено второе тело. На какой высоте тела столкнутся? Размерами тел и сопротивлением воздуха пренебречь.

Движение тела, брошенного вертикально вверх, — равноускоренное движение по вертикальной прямой с ускорением g, направленным вниз (т.е. в обычной системе координат, где ось y направлена вверх, ускорение отрицательно). Уравнение движения такого тела, брошенного с высоты x0 и со скоростью v0,

Пишем уравнения движения для обоих тел, причем оба этих уравнения должны выражаться через одно и то же время. Проще всего взять на начало отсчета времени тот момент, когда было пущено второе тело. Тогда

Столкновение тел происходит в тот момент, когда координаты тел совпадут. Так что нам осталось приравнять x1=x2, найти t, затем подставить его в любое из двух уравнений и найти искомую высоту.

Можно поступить чуть хитрее и воспользоваться тем, что движение обоих тел абсолютно одинаковое, но только сдвинутое по времени на величину . Тогда

Приравнивание x1=x2 сразу дает t = τ/2, а подстановка в любое из уравнений дает ответ h1 = 3/4 h.

Эта задача была довольно простой, поскольку она касается равноускоренного одномерного движения, и как олимпиадную её можно предлагать разве только на уровне школьных или городских олимпиад. Но вот пример посложнее.

Пример 2

Какую горизонтальную скорость необходимо сообщить математическому маятнику (материальной точке, подвешенной на нерастяжимой нити длины L), чтобы он, описав дугу, попал ровно в точку подвеса?

Задачи на физический смысл и применимость законов[править]

Как правило, те или иные законы выполняются не всегда, а при соблюдении некоторых условий. Эти условия школьнику сообщаются мимоходом, и зачастую он их забывает, запоминая лишь формулу. Задачи на применимость законов — это как раз задачи на проверку того, понимает ли школьник физический смысл и границы применимости тех или иных законов. Часто такие задачи формулируются в виде «парадокса», и от школьника требуется его распутать.

<Закон сохранения энергии универсален. Закон сохранения механической энергии нет, так как в системах где происходит неупругое взаимодействие или присутствует трение, полная механическая энергия изменяется>.
Пример 3

По дороге с постоянной скоростью v едут две машины. Они едут по инерции: никакого сопротивления своему движению они не испытывают. Одна из машин тратит определенное количество бензина и разгоняется до скорости 2v, и снова едет по инерции с этой новой скоростью. В процессе разгона химическая энергия, запасенная в бензине тратится на изменение кинетической энергии автомобиля. Однако в одной системе отсчета (связанной с неподвижным пешеходом) это изменение равно 3/2 mv2, тогда как в другой системе отсчета (связанной со вторым автомобилем) она равна mv2/2. Но ведь химическая энергия, запасенная в бензине, не зависит от системы отсчета! Как разрешить парадокс?

Опыт показывает, что многие не понимают, в чём тут проблема. Говорят, ну так это понятно: в одной системе отсчета кинетическая энергия одна, в другой — другая, в чём проблема? Проблема в том, что в задаче речь идет не про саму кинетическую энергию, а про её изменение. А оно, в силу закона сохранения полной энергии, не должно меняться при переходе от одной инерциальной системы отсчета в другую.

Для того, чтоб ещё сильнее почувствовать парадокс, можно рассмотреть процесс разгона машины в третьей системе отсчета, которая всегда двигалась со скоростью 2v. Тогда в этой системе отсчета машина тратит какое-то количество химической энергии для того, чтобы уменьшить свою кинетическую энергию! Законом сохранения энергии и не пахнет. В чём же дело?

Дело в том, что закон сохранения энергии справедлив лишь для замкнутой системы, т.е. системы, не взаимодействующей с внешним миром. Никто не требует сохранения энергии для части системы. Наша машина — незамкнутая система, потому что она разгоняется. Замкнутая система разгоняться не может по первому закону Ньютона.

С чем же взаимодействует машина? С тем, от чего она отталкивается при разгоне (ведь разгон, т. е. ускорение, возникает, согласно второму закону Ньютона, из-за внешних сил). Поскольку машина разгоняется из-за того, что её колёса имеют сцепление с Землёй, то отталкивается она от Земли. Итак, становится ясно, что машина — это лишь часть взаимодействующей системы «Земля+машина», и потому кинетическая энергия одной только машины не обязана сохраняться, что мы и видим в нашем «парадоксе».

А сохраняется ли энергия всей системы «Земля+машина»? Разумеется, да, поскольку это замкнутая система. Однако оставим это читателю в качестве упражнения.

Задачи, в которых почти ничего не дано[править]

Часто встречаются задачи, в которых, казалось бы, ничего не дано, а что-то требуется найти. Эти задачи могут легко поставить школьника в тупик: с чего начинать решение, если ничего не дано?!

Метод решения стандартен: необходимо научиться преодолевать «страх перед неизвестным». Это значит, что в начале решения надо ввести все необходимые параметры. Да, они не даны, и ответ выражать через них нельзя, но никто нам не запрещает их использовать в процессе решения! Оказывается, что в ответе все неизвестные введенные величины сокращаются.

Такие задачи «красивы» с точки зрения физики, поскольку они используют неочевидную симметрию системы: ответ не зависит от конкретного выбора параметров, а значит годится для целого класса систем. Составление таких задач — чрезвычайно хорошая проверка для преподавателя-физика, поскольку он обязан почувствовать, увидеть систему со скрытой симметрией.

Пример 4

Математический маятник колеблется с некоторой амплитудой. Известно, что его ускорение в точке максимального отклонения по модулю равно ускорению в нижней точке траектории. С какой амплитудой колеблется маятник?

Задачи, требующие почувствовать явление целиком[править]

Есть задачи, в которых речь идет о некотором нестандартном явлении. Часто для решения таких задач требуется в деталях представить себе, что и как при этом происходит, что для задачи существенно, а что — нет. После того, как явление представлено, решение находится довольно быстро. Без этого, при попытке справиться с задачей «пошагово», решение становится очень громоздким, непрозрачным, и в нём легко допустить ошибку. Универсального рецепта, как не ошибиться при визуализации таких задач, нет: скорее это приходит само как результат широкого кругозора и прорешивания множества задач.

Пример 5: качественная задача

Что произойдёт с уровнем воды в бассейне, если из плавающей в нём лодки бросить в воду камень? (Эту задачу когда-то предложили знаменитым физикам Г. А. Гамову, Д. Р. Оппенгеймеру и Ф. Блоху, и они ответили неправильно.) Изменится ли уровень воды (и, если да, то в какой момент) в том случае, если лодка с камнем утонет из-за дыр в её днище?

Пример 6: количественная задача

Вдоль наклонной плоскости на одинаковом расстоянии друг от друга расставлены одинаковые кирпичи. Коэффициент трения о поверхность таков, что если кирпич покоился, то он продолжает покоиться, однако если его чуть-чуть сдвинуть или толкнуть, то он начинает съезжать с ускорением a. (Такое вполне возможно, так как трение покоя обычно больше трения скольжения.) В начальный момент времени все кирпичи покоятся. Затем верхний кирпич слегка подталкивают, и он начинает соскальзывать вниз. Спустя некоторое время он сталкивается со вторым кирпичом, они соскальзывают вместе, сталкиваются с третьим, и т. д. Все столкновения абсолютно неупруги. Требуется узнать, каково будет усредненное установившееся ускорение всего «паровоза» движущихся кирпичей спустя большой промежуток времени.

Задачи, звучащие как передний край науки[править]

Некоторые задачи современной физики удается очистить от ненужной шелухи и сформулировать на школьном уровне. Формулировка таких задач может содержать слова, выходящие за рамки школьного курса, однако метод решения опирается только на школьные навыки. Единственная трудность здесь — не бояться новых терминов, легко включаться в предложенную «нешкольную» физическую систему. Способность составления таких задач также является хорошим критерием уровня физика-преподавателя.

Пример 7

Согласно некоторым современным теориям, гравитационная постоянная Ньютона может медленно меняться со временем. Известно, что за последние сто лет длительность календарного года изменилась не более, чем на 1 секунду (числа условные). Получить ограничение сверху на скорость изменения гравитационной постоянной G.

Примеры задач из современной физики, доступные школьнику, можно найти на странице Современная физика в задачах.

Литература[править]

  • Габышев Д.Н. Искусство составлять задачи и немного об их решении: учебное пособие. — Тюмень: Издательство ТюмГУ, 2012. — 68 с. — ISBN 978-5-400-00606-7